CLASSIFICATION TASK

OBJECTIVE: Classify 8×8 pixel patterns into 4 categories. 300 training samples total.

H-STRIPE
V-STRIPE
DIAGONAL
CHECKER

ALL NETWORK WEIGHTS

DARKER = HIGHER VALUE. ORANGE = ACTIVE GRADIENT.

Neural Network Architecture

Input Layer
(64 pixels)
...
Hidden Layer
(6 features)
Output Layer
(4 classes)

WEIGHTS (ABOVE) = PARAMETERS CONNECTING INPUT TO HIDDEN LAYER

TRY THE NETWORK

Draw an 8×8 pattern and watch the network classify it in real-time.

PREDICTION:
CONFIDENCE:
HIDDEN LAYER (6 features)
OUTPUT LAYER (4 classes)
for each batch: gradient = ∂Loss/∂θ θ = θ - α · gradient where: θ = network parameters (weights) α = learning rate (step size)
α = 0.100
6
0.2x
Iteration: 0
Loss: 0.000
Accuracy: 0%
Status: Ready